深海巨大症

ノルウェーに打ち上げられた9 mの巨大イカ(2番目に大きい頭足類である)の調査

動物学において、深海巨大症(しんかいきょだいしょう、英語: deep-sea gigantism, abyssal gigantism)は、無脊椎動物や他の深海で生活する動物種が、浅いところに棲む近縁の動物よりも大きくなる傾向のこと。深海での少ない食料資源、高い圧力、低い温度への適応などからの説明が提案されている。

分類学上の範囲

深海巨大症の例としては、ダイオウグソクムシ[1]、giant ostracod[1]ヨロイウミグモ[1]、giant amphipod、タカアシガニリュウグウノツカイウスエイカンテンダコ[2]、多くのイカの種類(ダイオウホウズキイカ(体長最大14 m[3]ダイオウイカ(最大12 m)[3]ニュウドウイカ、Taningia danae, Galiteuthis phyllura, Kondakovia longimana, bigfin squid)が挙げられる。

説明

海棲の甲殻類の場合、深さとともにサイズが大きくなるのは、緯度とともにサイズが大きくなるのと同じ理由(ベルクマンの法則)であるということが提案されている。どちらの傾向も温度低下とともにサイズが大きくなることが含まれている[4]。深さに伴うこの傾向はアミ、オキアミ十脚目ワラジムシ目端脚類で観察される[4]。いくつかの同じ群において、緯度の傾向は広く分布している種同様関連種の比較においても観察されている[4]。温度が下がった結果、細胞の大きさが大きくなり寿命が長くなると考えられる。このどちらもが最大のサイズが増えることにつながる(生きている限り継続的に成長するのは甲殻類の特徴である)[4]。垂直方向の温度勾配が小さくなる北極海および南極海では、静水圧が重要な要素であることに反し体の大きさが深くなるにつれて大きくなるという傾向もある[4]

巨大チューブワームの大きさに影響を与えるうえで、温度が同様の役割をしているとは思われない。2-30℃の周囲温度で熱水噴出孔に生息するRiftia pachyptila[5]冷水湧出帯に生息するLamellibrachia luymesiに匹敵する2.7 mの長さに達する。しかし、前者は急速に成長し寿命が約2年と短いのに対し[6]、後者はゆっくり成長し250年以上生きることができる[7]

ギャラリー

脚注

[脚注の使い方]
  1. ^ a b c d McClain, Craig. "Why isn't the Giant Isopod larger?". Deep Sea News. Retrieved 1 March 2018.
  2. ^ Hoving, H. J. T.; Haddock, S. H. D. (2017-03-27). “The giant deep-sea octopus Haliphron atlanticus forages on gelatinous fauna”. Scientific Reports 7: 44952. doi:10.1038/srep44952. 
  3. ^ a b Anderton, Jim (2007年2月22日). “Amazing specimen of world's largest squid in NZ”. New Zealand Government. 2010年5月23日時点のオリジナルよりアーカイブ。2019年2月閲覧。
  4. ^ a b c d e Timofeev, S. F. (2001). “Bergmann’s Principle and Deep-Water Gigantism in Marine Crustaceans”. Biology Bulletin (Russian version, Izvestiya Akademii Nauk, Seriya Biologicheskaya) 28 (6): 646–650 (Russian version, 764–768). doi:10.1023/A:1012336823275. http://www.springerlink.com/content/w40861j17433662t/. 
  5. ^ Bright, M.; Lallier, F. H. (2010). “The biology of vestimentiferan tubeworms”. Oceanography and Marine Biology: An Annual Review (Taylor & Francis) 48: 213–266. doi:10.1201/ebk1439821169-c4. http://www.sb-roscoff.fr/Ecchis/pdf/10-Bright-OMBAR.pdf 2013年10月30日閲覧。. 
  6. ^ Lutz, R. A.; Shank, T. M.; Fornari, D. J.; Haymon, R. M.; Lilley, M. D.; Von Damm, K. L.; Desbruyeres, D. (1994). “Rapid growth at deep-sea vents”. Nature 371 (6499): 663. doi:10.1038/371663a0. 
  7. ^ MacDonald (2002年). “Stability and Change in Gulf of Mexico Chemosynthetic Communities” (PDF). MMS. 2013年10月30日閲覧。

外部リンク

  • Science Daily: Midgets and giants in the deep sea
生物分布の法則

アレンの法則 寒い地域に住む個体群ほど突出部が小さくなる
ベルクマンの法則 寒い地域に住む個体群ほど体が大きくなる
コープの法則 体の大きさは時代の経過により大きくなる
深海巨大症 深海生物の体が大きくなる
ドロの法則 複雑な特性の喪失は不可逆である
アイヒラーの法則 寄生虫は宿主と共に変化する
エメリーの法則(英語版) 昆虫の社会寄生中はしばしばその宿主と同じ属である
ファーレンホルツの法則(英語版) 宿主と寄生虫の系統発生は一致する
フォスターの法則 島嶼部においては、大型動物は小さくなり、小型動物は大きくなる
ガウゼの法則 完全な競争者は共存できない
グロージャーの法則 寒い地域に住む個体群ほど体色が薄くなる
ホールデンの法則(英語版) Hybrid sexes that are absent, rare, or sterile, are heterogamic
ハリソンの法則(英語版) 寄生虫の大きさは宿主とともに変化する
ハミルトン則 相手の血縁度と相手が得る利益の積が行為者への生殖コストを上回ると遺伝子の頻度が増加する
ヘニッヒの発達則 分類学において、もっとも原始的な種は集団の領域の最も早い、中心部にある
ジャーマン・ベル原理(英語版) 動物の大きさとその食事の質の相関関係。大きな動物は質の低い食事ができる
ジョーダンの法則 水温と鰭条や椎骨の数との逆相関
ラックの原理 鳥は食べ物を提供できるだけの卵を産む
ラポポートの法則 低緯度地域ほど狭い地域に多くの生物種が生息する
レンチェの法則(英語版) 体の大きさの性的二形はオスが大きくなると大きくなり、メスが大きくなると小さくなる
ローザの法則(英語版) 集団は原始種の中の変化特性から高度な種の中の固定特性へ進化する
シュマルハウゼンの法則(英語版) 1つの側面で許容範囲にある個体群は、他の側面での小さな違いに対して脆弱である
ソーソンの法則(英語版) 底生海洋無脊椎動物の卵の数は緯度と共に減少する
ヴァン・ヴェーレンの法則 集団の絶滅の確率は、時間に関係なく一定である
フォン・ベーアの法則(英語版) 胚は一般的な形から始まり、だんだんと特殊な形になっていく
ウィリストンの法則(英語版) 生物の一部は数が減り、機能に特化する