Riemannin zeeta-funktio

Matematiikassa Riemannin zeeta-funktio on kompleksitason kuvaus, joka liittyy alkulukujen jakaumaan ja on siksi mielenkiintoinen mm. lukuteorian kannalta. [1]

Määritelmä

Riemannin zeeta-funktio ζ ( s ) {\displaystyle \zeta (s)} on määritelty kompleksiluvuille s {\displaystyle s} , joiden reaaliosa > 1 {\displaystyle >1} , summaksi

ζ ( s ) = n = 1 1 n s {\displaystyle \zeta (s)=\sum _{n=1}^{\infty }{\frac {1}{n^{s}}}} .

Alueessa { s C : R e   s > 1 } {\displaystyle \{s\in \mathbb {C} :\mathrm {Re~} s>1\}} tämä sarja suppenee ja zeeta-funktio on analyyttinen. Bernhard Riemann keksi, että zeeta-funktiota voidaan analyyttisesti jatkaa meromorfiseksi funktioksi, joka on määritelty koko kompleksitasossa lukuun ottamatta pistettä 1 {\displaystyle 1} . Tämä funktio on kyseessä Riemannin hypoteesissa.

Integraaleja

Jos s C { 1 } {\displaystyle s\in \mathbb {C} \setminus \{1\}} pätevät kaavat

ζ ( s ) = 2 s 1 s 1 2 s 0 sin ( s arctan t ) ( 1 + t 2 ) s 2   ( e π t + 1 ) d t {\displaystyle \zeta (s)={\frac {2^{s-1}}{s-1}}-2^{s}\int \limits _{0}^{\infty }{\frac {\sin(s\arctan t)}{(1+t^{2})^{\frac {s}{2}}\ (\mathrm {e} ^{\pi \,t}+1)}}\,\mathrm {d} t}

ja

ζ ( s ) = 1 s 1 + 1 2 + 2 0 sin ( s arctan t ) ( 1 + t 2 ) s 2   ( e 2 π t 1 ) d t . {\displaystyle \zeta (s)={\frac {1}{s-1}}+{\frac {1}{2}}+2\int \limits _{0}^{\infty }{\frac {\sin(s\arctan t)}{(1+t^{2})^{\frac {s}{2}}\ (\mathrm {e} ^{2\,\pi \,t}-1)}}\,\mathrm {d} t.}

Jos 0 < R e ( s ) < 1 {\displaystyle 0<Re(s)<1\!} on

0 x s 1 γ x + log Γ ( 1 + x ) x 2 d x = π sin ( π s ) ζ ( 2 s ) 2 s {\displaystyle \int _{0}^{\infty }x^{s-1}{\frac {\gamma x+\log \Gamma (1+x)}{x^{2}}}\,dx={\frac {\pi }{\sin(\pi s)}}{\frac {\zeta (2-s)}{2-s}}\!} .

Integraali zeetafunktion derivaatalle on

ζ ( s ) = 2 s 1 ( log 2 s 1 1 ( s 1 ) 2 + 0 2 arctan t cos ( s arctan t ) + log 4 1 + t 2 sin ( s arctan t ) ( 1 + t 2 ) s 2 ( e π t + 1 ) d t ) {\displaystyle {\zeta '(s)=2^{s-1}\left({\frac {\log 2}{s-1}}-{\frac {1}{(s-1)^{2}}}+\int \limits _{0}^{\infty }{\frac {2\arctan t\cdot \cos(s\arctan t)+\log {\frac {4}{1+t^{2}}}\cdot \sin(s\arctan t)}{(1+t^{2})^{\frac {s}{2}}\cdot (e^{\pi t}+1)}}\mathrm {d} t\right)}}

joka pätee kaikille kompleksiluvuille paitsi kun s=1.

Kaavoja jotka sisältävät zeetafunktion

k = 2 ζ ( k ) x k 1 = ψ 0 ( 1 x ) γ {\displaystyle \sum _{k=2}^{\infty }\zeta (k)x^{k-1}=-\psi _{0}(1-x)-\gamma }

missä ψ0 on digammafunktio.

n = 2 ( ζ ( n ) 1 ) = 1 {\displaystyle \sum _{n=2}^{\infty }(\zeta (n)-1)=1}
n = 1 ( ζ ( 2 n ) 1 ) = 3 4 {\displaystyle \sum _{n=1}^{\infty }(\zeta (2n)-1)={\frac {3}{4}}}
n = 1 ( ζ ( 2 n + 1 ) 1 ) = 1 4 {\displaystyle \sum _{n=1}^{\infty }(\zeta (2n+1)-1)={\frac {1}{4}}}
n = 2 ( 1 ) n ( ζ ( n ) 1 ) = 1 2 {\displaystyle \sum _{n=2}^{\infty }(-1)^{n}(\zeta (n)-1)={\frac {1}{2}}}
n = 1 ζ ( 2 n ) 1 2 2 n = 1 6 {\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{2^{2n}}}={\frac {1}{6}}}
n = 1 ζ ( 2 n ) 1 4 2 n = 13 30 π 8 {\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{4^{2n}}}={\frac {13}{30}}-{\frac {\pi }{8}}}
n = 1 ζ ( 2 n ) 1 8 2 n = 61 126 π 16 ( 2 + 1 ) {\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{8^{2n}}}={\frac {61}{126}}-{\frac {\pi }{16}}({\sqrt {2}}+1)}
n = 1 ( ζ ( 4 n ) 1 ) = 7 8 π 4 ( e 2 π + 1 e 2 π 1 ) {\displaystyle \sum _{n=1}^{\infty }(\zeta (4n)-1)={\frac {7}{8}}-{\frac {\pi }{4}}\left({\frac {e^{2\pi }+1}{e^{2\pi }-1}}\right)}
log 2 = n = 1 ζ ( 2 n ) 1 n {\displaystyle \log 2=\sum _{n=1}^{\infty }{\frac {\zeta (2n)-1}{n}}}
log π = n = 2 ( 2 ( 3 2 ) n 3 ) ( ζ ( n ) 1 ) n . {\displaystyle \log \pi =\sum _{n=2}^{\infty }{\frac {(2({\tfrac {3}{2}})^{n}-3)(\zeta (n)-1)}{n}}.}

Sarjoja Eulerin vakiolle:

n = 2 ( 1 ) n ζ ( n ) n = γ {\displaystyle \sum _{n=2}^{\infty }(-1)^{n}{\frac {\zeta (n)}{n}}=\gamma }
n = 2 ζ ( n ) 1 n = 1 γ {\displaystyle \sum _{n=2}^{\infty }{\frac {\zeta (n)-1}{n}}=1-\gamma }
n = 2 ( 1 ) n ζ ( n ) 1 n = ln 2 + γ 1 {\displaystyle \sum _{n=2}^{\infty }(-1)^{n}{\frac {\zeta (n)-1}{n}}=\ln 2+\gamma -1}
n = 2 ( 1 ) n ζ ( n ) n 2 n 1 = γ log 4 π {\displaystyle \sum _{n=2}^{\infty }(-1)^{n}{\frac {\zeta (n)}{n2^{n-1}}}=\gamma -\log {\frac {4}{\pi }}}
n = 1 ζ ( 2 n + 1 ) 1 ( 2 n + 1 )   2 2 n = 1 + log 2 3 γ . {\displaystyle \sum _{n=1}^{\infty }{\frac {\zeta (2n+1)-1}{(2n+1)\ 2^{2n}}}=1+\log {\frac {2}{3}}-\gamma .}

Sarja Catalanin vakiolle:

1 16 n = 1 ( n + 1 )   3 n 1 4 n   ζ ( n + 2 ) = G . {\displaystyle {\frac {1}{16}}\sum _{n=1}^{\infty }(n+1)\ {\frac {3^{n}-1}{4^{n}}}\ \zeta (n+2)=G.}
n = 1 ( 1 ) n t 2 n [ ζ ( 2 n ) 1 ] = t 2 1 + t 2 + 1 π t 2 π t e 2 π t 1 {\displaystyle \sum _{n=1}^{\infty }(-1)^{n}t^{2n}\left[\zeta (2n)-1\right]={\frac {t^{2}}{1+t^{2}}}+{\frac {1-\pi t}{2}}-{\frac {\pi t}{e^{2\pi t}-1}}}
k = 0 ζ ( k + n + 2 ) 1 2 k ( n + k + 1 n + 1 ) = ( 2 n + 2 1 ) ζ ( n + 2 ) 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {\zeta (k+n+2)-1}{2^{k}}}{{n+k+1} \choose {n+1}}=\left(2^{n+2}-1\right)\zeta (n+2)-1}
k = 0 ( k + ν + 1 k ) [ ζ ( k + ν + 2 ) 1 ] = ζ ( ν + 2 ) {\displaystyle \sum _{k=0}^{\infty }{k+\nu +1 \choose k}\left[\zeta (k+\nu +2)-1\right]=\zeta (\nu +2)}
k = 0 ( k + ν + 1 k + 1 ) [ ζ ( k + ν + 2 ) 1 ] = 1 {\displaystyle \sum _{k=0}^{\infty }{k+\nu +1 \choose k+1}\left[\zeta (k+\nu +2)-1\right]=1}
k = 0 ( 1 ) k ( k + ν + 1 k + 1 ) [ ζ ( k + ν + 2 ) 1 ] = 2 ( ν + 1 ) {\displaystyle \sum _{k=0}^{\infty }(-1)^{k}{k+\nu +1 \choose k+1}\left[\zeta (k+\nu +2)-1\right]=2^{-(\nu +1)}}
k = 0 ( 1 ) k ( k + ν + 1 k + 2 ) [ ζ ( k + ν + 2 ) 1 ] = ν [ ζ ( ν + 1 ) 1 ] 2 ν {\displaystyle \sum _{k=0}^{\infty }(-1)^{k}{k+\nu +1 \choose k+2}\left[\zeta (k+\nu +2)-1\right]=\nu \left[\zeta (\nu +1)-1\right]-2^{-\nu }}
k = 0 ( 1 ) k ( k + ν + 1 k ) [ ζ ( k + ν + 2 ) 1 ] = ζ ( ν + 2 ) 1 2 ( ν + 2 ) {\displaystyle \sum _{k=0}^{\infty }(-1)^{k}{k+\nu +1 \choose k}\left[\zeta (k+\nu +2)-1\right]=\zeta (\nu +2)-1-2^{-(\nu +2)}}

Katso myös

  • Zeeta-funktio

Lähteet

  1. Thompson, Jan & Martinsson, Thomas: Matematiikan käsikirja, s. 341–342. Helsinki: Tammi, 1994. ISBN 951-31-0471-0.

Kirjallisuutta