Exterior calculus identities

This article summarizes several identities in exterior calculus, a mathematical notation used in differential geometry.[1][2][3][4][5]

Notation

The following summarizes short definitions and notations that are used in this article.

Manifold

M {\displaystyle M} , N {\displaystyle N} are n {\displaystyle n} -dimensional smooth manifolds, where n N {\displaystyle n\in \mathbb {N} } . That is, differentiable manifolds that can be differentiated enough times for the purposes on this page.

p M {\displaystyle p\in M} , q N {\displaystyle q\in N} denote one point on each of the manifolds.

The boundary of a manifold M {\displaystyle M} is a manifold M {\displaystyle \partial M} , which has dimension n 1 {\displaystyle n-1} . An orientation on M {\displaystyle M} induces an orientation on M {\displaystyle \partial M} .

We usually denote a submanifold by Σ M {\displaystyle \Sigma \subset M} .

Tangent and cotangent bundles

T M {\displaystyle TM} , T M {\displaystyle T^{*}M} denote the tangent bundle and cotangent bundle, respectively, of the smooth manifold M {\displaystyle M} .

T p M {\displaystyle T_{p}M} , T q N {\displaystyle T_{q}N} denote the tangent spaces of M {\displaystyle M} , N {\displaystyle N} at the points p {\displaystyle p} , q {\displaystyle q} , respectively. T p M {\displaystyle T_{p}^{*}M} denotes the cotangent space of M {\displaystyle M} at the point p {\displaystyle p} .

Sections of the tangent bundles, also known as vector fields, are typically denoted as X , Y , Z Γ ( T M ) {\displaystyle X,Y,Z\in \Gamma (TM)} such that at a point p M {\displaystyle p\in M} we have X | p , Y | p , Z | p T p M {\displaystyle X|_{p},Y|_{p},Z|_{p}\in T_{p}M} . Sections of the cotangent bundle, also known as differential 1-forms (or covector fields), are typically denoted as α , β Γ ( T M ) {\displaystyle \alpha ,\beta \in \Gamma (T^{*}M)} such that at a point p M {\displaystyle p\in M} we have α | p , β | p T p M {\displaystyle \alpha |_{p},\beta |_{p}\in T_{p}^{*}M} . An alternative notation for Γ ( T M ) {\displaystyle \Gamma (T^{*}M)} is Ω 1 ( M ) {\displaystyle \Omega ^{1}(M)} .

Differential k-forms

Differential k {\displaystyle k} -forms, which we refer to simply as k {\displaystyle k} -forms here, are differential forms defined on T M {\displaystyle TM} . We denote the set of all k {\displaystyle k} -forms as Ω k ( M ) {\displaystyle \Omega ^{k}(M)} . For 0 k ,   l ,   m n {\displaystyle 0\leq k,\ l,\ m\leq n} we usually write α Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} , β Ω l ( M ) {\displaystyle \beta \in \Omega ^{l}(M)} , γ Ω m ( M ) {\displaystyle \gamma \in \Omega ^{m}(M)} .

0 {\displaystyle 0} -forms f Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} are just scalar functions C ( M ) {\displaystyle C^{\infty }(M)} on M {\displaystyle M} . 1 Ω 0 ( M ) {\displaystyle \mathbf {1} \in \Omega ^{0}(M)} denotes the constant 0 {\displaystyle 0} -form equal to 1 {\displaystyle 1} everywhere.

Omitted elements of a sequence

When we are given ( k + 1 ) {\displaystyle (k+1)} inputs X 0 , , X k {\displaystyle X_{0},\ldots ,X_{k}} and a k {\displaystyle k} -form α Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} we denote omission of the i {\displaystyle i} th entry by writing

α ( X 0 , , X ^ i , , X k ) := α ( X 0 , , X i 1 , X i + 1 , , X k ) . {\displaystyle \alpha (X_{0},\ldots ,{\hat {X}}_{i},\ldots ,X_{k}):=\alpha (X_{0},\ldots ,X_{i-1},X_{i+1},\ldots ,X_{k}).}

Exterior product

The exterior product is also known as the wedge product. It is denoted by : Ω k ( M ) × Ω l ( M ) Ω k + l ( M ) {\displaystyle \wedge :\Omega ^{k}(M)\times \Omega ^{l}(M)\rightarrow \Omega ^{k+l}(M)} . The exterior product of a k {\displaystyle k} -form α Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} and an l {\displaystyle l} -form β Ω l ( M ) {\displaystyle \beta \in \Omega ^{l}(M)} produce a ( k + l ) {\displaystyle (k+l)} -form α β Ω k + l ( M ) {\displaystyle \alpha \wedge \beta \in \Omega ^{k+l}(M)} . It can be written using the set S ( k , k + l ) {\displaystyle S(k,k+l)} of all permutations σ {\displaystyle \sigma } of { 1 , , n } {\displaystyle \{1,\ldots ,n\}} such that σ ( 1 ) < < σ ( k ) ,   σ ( k + 1 ) < < σ ( k + l ) {\displaystyle \sigma (1)<\ldots <\sigma (k),\ \sigma (k+1)<\ldots <\sigma (k+l)} as

( α β ) ( X 1 , , X k + l ) = σ S ( k , k + l ) sign ( σ ) α ( X σ ( 1 ) , , X σ ( k ) ) β ( X σ ( k + 1 ) , , X σ ( k + l ) ) . {\displaystyle (\alpha \wedge \beta )(X_{1},\ldots ,X_{k+l})=\sum _{\sigma \in S(k,k+l)}{\text{sign}}(\sigma )\alpha (X_{\sigma (1)},\ldots ,X_{\sigma (k)})\otimes \beta (X_{\sigma (k+1)},\ldots ,X_{\sigma (k+l)}).}

Directional derivative

The directional derivative of a 0-form f Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} along a section X Γ ( T M ) {\displaystyle X\in \Gamma (TM)} is a 0-form denoted X f . {\displaystyle \partial _{X}f.}

Exterior derivative

The exterior derivative d k : Ω k ( M ) Ω k + 1 ( M ) {\displaystyle d_{k}:\Omega ^{k}(M)\rightarrow \Omega ^{k+1}(M)} is defined for all 0 k n {\displaystyle 0\leq k\leq n} . We generally omit the subscript when it is clear from the context.

For a 0 {\displaystyle 0} -form f Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} we have d 0 f Ω 1 ( M ) {\displaystyle d_{0}f\in \Omega ^{1}(M)} as the 1 {\displaystyle 1} -form that gives the directional derivative, i.e., for the section X Γ ( T M ) {\displaystyle X\in \Gamma (TM)} we have ( d 0 f ) ( X ) = X f {\displaystyle (d_{0}f)(X)=\partial _{X}f} , the directional derivative of f {\displaystyle f} along X {\displaystyle X} .[6]

For 0 < k n {\displaystyle 0<k\leq n} ,[6]

( d k ω ) ( X 0 , , X k ) = 0 j k ( 1 ) j d 0 ( ω ( X 0 , , X ^ j , , X k ) ) ( X j ) + 0 i < j k ( 1 ) i + j ω ( [ X i , X j ] , X 0 , , X ^ i , , X ^ j , , X k ) . {\displaystyle (d_{k}\omega )(X_{0},\ldots ,X_{k})=\sum _{0\leq j\leq k}(-1)^{j}d_{0}(\omega (X_{0},\ldots ,{\hat {X}}_{j},\ldots ,X_{k}))(X_{j})+\sum _{0\leq i<j\leq k}(-1)^{i+j}\omega ([X_{i},X_{j}],X_{0},\ldots ,{\hat {X}}_{i},\ldots ,{\hat {X}}_{j},\ldots ,X_{k}).}

Lie bracket

The Lie bracket of sections X , Y Γ ( T M ) {\displaystyle X,Y\in \Gamma (TM)} is defined as the unique section [ X , Y ] Γ ( T M ) {\displaystyle [X,Y]\in \Gamma (TM)} that satisfies

f Ω 0 ( M ) [ X , Y ] f = X Y f Y X f . {\displaystyle \forall f\in \Omega ^{0}(M)\Rightarrow \partial _{[X,Y]}f=\partial _{X}\partial _{Y}f-\partial _{Y}\partial _{X}f.}

Tangent maps

If ϕ : M N {\displaystyle \phi :M\rightarrow N} is a smooth map, then d ϕ | p : T p M T ϕ ( p ) N {\displaystyle d\phi |_{p}:T_{p}M\rightarrow T_{\phi (p)}N} defines a tangent map from M {\displaystyle M} to N {\displaystyle N} . It is defined through curves γ {\displaystyle \gamma } on M {\displaystyle M} with derivative γ ( 0 ) = X T p M {\displaystyle \gamma '(0)=X\in T_{p}M} such that

d ϕ ( X ) := ( ϕ γ ) . {\displaystyle d\phi (X):=(\phi \circ \gamma )'.}

Note that ϕ {\displaystyle \phi } is a 0 {\displaystyle 0} -form with values in N {\displaystyle N} .

Pull-back

If ϕ : M N {\displaystyle \phi :M\rightarrow N} is a smooth map, then the pull-back of a k {\displaystyle k} -form α Ω k ( N ) {\displaystyle \alpha \in \Omega ^{k}(N)} is defined such that for any k {\displaystyle k} -dimensional submanifold Σ M {\displaystyle \Sigma \subset M}

Σ ϕ α = ϕ ( Σ ) α . {\displaystyle \int _{\Sigma }\phi ^{*}\alpha =\int _{\phi (\Sigma )}\alpha .}

The pull-back can also be expressed as

( ϕ α ) ( X 1 , , X k ) = α ( d ϕ ( X 1 ) , , d ϕ ( X k ) ) . {\displaystyle (\phi ^{*}\alpha )(X_{1},\ldots ,X_{k})=\alpha (d\phi (X_{1}),\ldots ,d\phi (X_{k})).}

Interior product

Also known as the interior derivative, the interior product given a section Y Γ ( T M ) {\displaystyle Y\in \Gamma (TM)} is a map ι Y : Ω k + 1 ( M ) Ω k ( M ) {\displaystyle \iota _{Y}:\Omega ^{k+1}(M)\rightarrow \Omega ^{k}(M)} that effectively substitutes the first input of a ( k + 1 ) {\displaystyle (k+1)} -form with Y {\displaystyle Y} . If α Ω k + 1 ( M ) {\displaystyle \alpha \in \Omega ^{k+1}(M)} and X i Γ ( T M ) {\displaystyle X_{i}\in \Gamma (TM)} then

( ι Y α ) ( X 1 , , X k ) = α ( Y , X 1 , , X k ) . {\displaystyle (\iota _{Y}\alpha )(X_{1},\ldots ,X_{k})=\alpha (Y,X_{1},\ldots ,X_{k}).}

Metric tensor

Given a nondegenerate bilinear form g p ( , ) {\displaystyle g_{p}(\cdot ,\cdot )} on each T p M {\displaystyle T_{p}M} that is continuous on M {\displaystyle M} , the manifold becomes a pseudo-Riemannian manifold. We denote the metric tensor g {\displaystyle g} , defined pointwise by g ( X , Y ) | p = g p ( X | p , Y | p ) {\displaystyle g(X,Y)|_{p}=g_{p}(X|_{p},Y|_{p})} . We call s = sign ( g ) {\displaystyle s=\operatorname {sign} (g)} the signature of the metric. A Riemannian manifold has s = 1 {\displaystyle s=1} , whereas Minkowski space has s = 1 {\displaystyle s=-1} .

Musical isomorphisms

The metric tensor g ( , ) {\displaystyle g(\cdot ,\cdot )} induces duality mappings between vector fields and one-forms: these are the musical isomorphisms flat {\displaystyle \flat } and sharp {\displaystyle \sharp } . A section A Γ ( T M ) {\displaystyle A\in \Gamma (TM)} corresponds to the unique one-form A Ω 1 ( M ) {\displaystyle A^{\flat }\in \Omega ^{1}(M)} such that for all sections X Γ ( T M ) {\displaystyle X\in \Gamma (TM)} , we have:

A ( X ) = g ( A , X ) . {\displaystyle A^{\flat }(X)=g(A,X).}

A one-form α Ω 1 ( M ) {\displaystyle \alpha \in \Omega ^{1}(M)} corresponds to the unique vector field α Γ ( T M ) {\displaystyle \alpha ^{\sharp }\in \Gamma (TM)} such that for all X Γ ( T M ) {\displaystyle X\in \Gamma (TM)} , we have:

α ( X ) = g ( α , X ) . {\displaystyle \alpha (X)=g(\alpha ^{\sharp },X).}

These mappings extend via multilinearity to mappings from k {\displaystyle k} -vector fields to k {\displaystyle k} -forms and k {\displaystyle k} -forms to k {\displaystyle k} -vector fields through

( A 1 A 2 A k ) = A 1 A 2 A k {\displaystyle (A_{1}\wedge A_{2}\wedge \cdots \wedge A_{k})^{\flat }=A_{1}^{\flat }\wedge A_{2}^{\flat }\wedge \cdots \wedge A_{k}^{\flat }}
( α 1 α 2 α k ) = α 1 α 2 α k . {\displaystyle (\alpha _{1}\wedge \alpha _{2}\wedge \cdots \wedge \alpha _{k})^{\sharp }=\alpha _{1}^{\sharp }\wedge \alpha _{2}^{\sharp }\wedge \cdots \wedge \alpha _{k}^{\sharp }.}

Hodge star

For an n-manifold M, the Hodge star operator : Ω k ( M ) Ω n k ( M ) {\displaystyle {\star }:\Omega ^{k}(M)\rightarrow \Omega ^{n-k}(M)} is a duality mapping taking a k {\displaystyle k} -form α Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} to an ( n k ) {\displaystyle (n{-}k)} -form ( α ) Ω n k ( M ) {\displaystyle ({\star }\alpha )\in \Omega ^{n-k}(M)} .

It can be defined in terms of an oriented frame ( X 1 , , X n ) {\displaystyle (X_{1},\ldots ,X_{n})} for T M {\displaystyle TM} , orthonormal with respect to the given metric tensor g {\displaystyle g} :

( α ) ( X 1 , , X n k ) = α ( X n k + 1 , , X n ) . {\displaystyle ({\star }\alpha )(X_{1},\ldots ,X_{n-k})=\alpha (X_{n-k+1},\ldots ,X_{n}).}

Co-differential operator

The co-differential operator δ : Ω k ( M ) Ω k 1 ( M ) {\displaystyle \delta :\Omega ^{k}(M)\rightarrow \Omega ^{k-1}(M)} on an n {\displaystyle n} dimensional manifold M {\displaystyle M} is defined by

δ := ( 1 ) k 1 d = ( 1 ) n k + n + 1 d . {\displaystyle \delta :=(-1)^{k}{\star }^{-1}d{\star }=(-1)^{nk+n+1}{\star }d{\star }.}

The Hodge–Dirac operator, d + δ {\displaystyle d+\delta } , is a Dirac operator studied in Clifford analysis.

Oriented manifold

An n {\displaystyle n} -dimensional orientable manifold M is a manifold that can be equipped with a choice of an n-form μ Ω n ( M ) {\displaystyle \mu \in \Omega ^{n}(M)} that is continuous and nonzero everywhere on M.

Volume form

On an orientable manifold M {\displaystyle M} the canonical choice of a volume form given a metric tensor g {\displaystyle g} and an orientation is d e t := | det g | d X 1 d X n {\displaystyle \mathbf {det} :={\sqrt {|\det g|}}\;dX_{1}^{\flat }\wedge \ldots \wedge dX_{n}^{\flat }} for any basis d X 1 , , d X n {\displaystyle dX_{1},\ldots ,dX_{n}} ordered to match the orientation.

Area form

Given a volume form d e t {\displaystyle \mathbf {det} } and a unit normal vector N {\displaystyle N} we can also define an area form σ := ι N det {\displaystyle \sigma :=\iota _{N}{\textbf {det}}} on the boundary M . {\displaystyle \partial M.}

Bilinear form on k-forms

A generalization of the metric tensor, the symmetric bilinear form between two k {\displaystyle k} -forms α , β Ω k ( M ) {\displaystyle \alpha ,\beta \in \Omega ^{k}(M)} , is defined pointwise on M {\displaystyle M} by

α , β | p := ( α β ) | p . {\displaystyle \langle \alpha ,\beta \rangle |_{p}:={\star }(\alpha \wedge {\star }\beta )|_{p}.}

The L 2 {\displaystyle L^{2}} -bilinear form for the space of k {\displaystyle k} -forms Ω k ( M ) {\displaystyle \Omega ^{k}(M)} is defined by

α , β := M α β . {\displaystyle \langle \!\langle \alpha ,\beta \rangle \!\rangle :=\int _{M}\alpha \wedge {\star }\beta .}

In the case of a Riemannian manifold, each is an inner product (i.e. is positive-definite).

Lie derivative

We define the Lie derivative L : Ω k ( M ) Ω k ( M ) {\displaystyle {\mathcal {L}}:\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)} through Cartan's magic formula for a given section X Γ ( T M ) {\displaystyle X\in \Gamma (TM)} as

L X = d ι X + ι X d . {\displaystyle {\mathcal {L}}_{X}=d\circ \iota _{X}+\iota _{X}\circ d.}

It describes the change of a k {\displaystyle k} -form along a flow ϕ t {\displaystyle \phi _{t}} associated to the section X {\displaystyle X} .

Laplace–Beltrami operator

The Laplacian Δ : Ω k ( M ) Ω k ( M ) {\displaystyle \Delta :\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)} is defined as Δ = ( d δ + δ d ) {\displaystyle \Delta =-(d\delta +\delta d)} .

Important definitions

Definitions on Ωk(M)

α Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} is called...

  • closed if d α = 0 {\displaystyle d\alpha =0}
  • exact if α = d β {\displaystyle \alpha =d\beta } for some β Ω k 1 {\displaystyle \beta \in \Omega ^{k-1}}
  • coclosed if δ α = 0 {\displaystyle \delta \alpha =0}
  • coexact if α = δ β {\displaystyle \alpha =\delta \beta } for some β Ω k + 1 {\displaystyle \beta \in \Omega ^{k+1}}
  • harmonic if closed and coclosed

Cohomology

The k {\displaystyle k} -th cohomology of a manifold M {\displaystyle M} and its exterior derivative operators d 0 , , d n 1 {\displaystyle d_{0},\ldots ,d_{n-1}} is given by

H k ( M ) := ker ( d k ) im ( d k 1 ) {\displaystyle H^{k}(M):={\frac {{\text{ker}}(d_{k})}{{\text{im}}(d_{k-1})}}}

Two closed k {\displaystyle k} -forms α , β Ω k ( M ) {\displaystyle \alpha ,\beta \in \Omega ^{k}(M)} are in the same cohomology class if their difference is an exact form i.e.

[ α ] = [ β ]         α β = d η    for some  η Ω k 1 ( M ) {\displaystyle [\alpha ]=[\beta ]\ \ \Longleftrightarrow \ \ \alpha {-}\beta =d\eta \ {\text{ for some }}\eta \in \Omega ^{k-1}(M)}

A closed surface of genus g {\displaystyle g} will have 2 g {\displaystyle 2g} generators which are harmonic.

Dirichlet energy

Given α Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} , its Dirichlet energy is

E D ( α ) := 1 2 d α , d α + 1 2 δ α , δ α {\displaystyle {\mathcal {E}}_{\text{D}}(\alpha ):={\dfrac {1}{2}}\langle \!\langle d\alpha ,d\alpha \rangle \!\rangle +{\dfrac {1}{2}}\langle \!\langle \delta \alpha ,\delta \alpha \rangle \!\rangle }

Properties

Exterior derivative properties

Σ d α = Σ α {\displaystyle \int _{\Sigma }d\alpha =\int _{\partial \Sigma }\alpha } ( Stokes' theorem )
d d = 0 {\displaystyle d\circ d=0} ( cochain complex )
d ( α β ) = d α β + ( 1 ) k α d β {\displaystyle d(\alpha \wedge \beta )=d\alpha \wedge \beta +(-1)^{k}\alpha \wedge d\beta } for α Ω k ( M ) ,   β Ω l ( M ) {\displaystyle \alpha \in \Omega ^{k}(M),\ \beta \in \Omega ^{l}(M)} ( Leibniz rule )
d f ( X ) = X f {\displaystyle df(X)=\partial _{X}f} for f Ω 0 ( M ) ,   X Γ ( T M ) {\displaystyle f\in \Omega ^{0}(M),\ X\in \Gamma (TM)} ( directional derivative )
d α = 0 {\displaystyle d\alpha =0} for α Ω n ( M ) ,   dim ( M ) = n {\displaystyle \alpha \in \Omega ^{n}(M),\ {\text{dim}}(M)=n}

Exterior product properties

α β = ( 1 ) k l β α {\displaystyle \alpha \wedge \beta =(-1)^{kl}\beta \wedge \alpha } for α Ω k ( M ) ,   β Ω l ( M ) {\displaystyle \alpha \in \Omega ^{k}(M),\ \beta \in \Omega ^{l}(M)} ( alternating )
( α β ) γ = α ( β γ ) {\displaystyle (\alpha \wedge \beta )\wedge \gamma =\alpha \wedge (\beta \wedge \gamma )} ( associativity )
( λ α ) β = λ ( α β ) {\displaystyle (\lambda \alpha )\wedge \beta =\lambda (\alpha \wedge \beta )} for λ R {\displaystyle \lambda \in \mathbb {R} } ( compatibility of scalar multiplication )
α ( β 1 + β 2 ) = α β 1 + α β 2 {\displaystyle \alpha \wedge (\beta _{1}+\beta _{2})=\alpha \wedge \beta _{1}+\alpha \wedge \beta _{2}} ( distributivity over addition )
α α = 0 {\displaystyle \alpha \wedge \alpha =0} for α Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} when k {\displaystyle k} is odd or rank α 1 {\displaystyle \operatorname {rank} \alpha \leq 1} . The rank of a k {\displaystyle k} -form α {\displaystyle \alpha } means the minimum number of monomial terms (exterior products of one-forms) that must be summed to produce α {\displaystyle \alpha } .

Pull-back properties

d ( ϕ α ) = ϕ ( d α ) {\displaystyle d(\phi ^{*}\alpha )=\phi ^{*}(d\alpha )} ( commutative with d {\displaystyle d} )
ϕ ( α β ) = ( ϕ α ) ( ϕ β ) {\displaystyle \phi ^{*}(\alpha \wedge \beta )=(\phi ^{*}\alpha )\wedge (\phi ^{*}\beta )} ( distributes over {\displaystyle \wedge } )
( ϕ 1 ϕ 2 ) = ϕ 2 ϕ 1 {\displaystyle (\phi _{1}\circ \phi _{2})^{*}=\phi _{2}^{*}\phi _{1}^{*}} ( contravariant )
ϕ f = f ϕ {\displaystyle \phi ^{*}f=f\circ \phi } for f Ω 0 ( N ) {\displaystyle f\in \Omega ^{0}(N)} ( function composition )

Musical isomorphism properties

( X ) = X {\displaystyle (X^{\flat })^{\sharp }=X}
( α ) = α {\displaystyle (\alpha ^{\sharp })^{\flat }=\alpha }

Interior product properties

ι X ι X = 0 {\displaystyle \iota _{X}\circ \iota _{X}=0} ( nilpotent )
ι X ι Y = ι Y ι X {\displaystyle \iota _{X}\circ \iota _{Y}=-\iota _{Y}\circ \iota _{X}}
ι X ( α β ) = ( ι X α ) β + ( 1 ) k α ( ι X β ) {\displaystyle \iota _{X}(\alpha \wedge \beta )=(\iota _{X}\alpha )\wedge \beta +(-1)^{k}\alpha \wedge (\iota _{X}\beta )} for α Ω k ( M ) ,   β Ω l ( M ) {\displaystyle \alpha \in \Omega ^{k}(M),\ \beta \in \Omega ^{l}(M)} ( Leibniz rule )
ι X α = α ( X ) {\displaystyle \iota _{X}\alpha =\alpha (X)} for α Ω 1 ( M ) {\displaystyle \alpha \in \Omega ^{1}(M)}
ι X f = 0 {\displaystyle \iota _{X}f=0} for f Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)}
ι X ( f α ) = f ι X α {\displaystyle \iota _{X}(f\alpha )=f\iota _{X}\alpha } for f Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)}

Hodge star properties

( λ 1 α + λ 2 β ) = λ 1 ( α ) + λ 2 ( β ) {\displaystyle {\star }(\lambda _{1}\alpha +\lambda _{2}\beta )=\lambda _{1}({\star }\alpha )+\lambda _{2}({\star }\beta )} for λ 1 , λ 2 R {\displaystyle \lambda _{1},\lambda _{2}\in \mathbb {R} } ( linearity )
α = s ( 1 ) k ( n k ) α {\displaystyle {\star }{\star }\alpha =s(-1)^{k(n-k)}\alpha } for α Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)} , n = dim ( M ) {\displaystyle n=\dim(M)} , and s = sign ( g ) {\displaystyle s=\operatorname {sign} (g)} the sign of the metric
( 1 ) = s ( 1 ) k ( n k ) {\displaystyle {\star }^{(-1)}=s(-1)^{k(n-k)}{\star }} ( inversion )
( f α ) = f ( α ) {\displaystyle {\star }(f\alpha )=f({\star }\alpha )} for f Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)} ( commutative with 0 {\displaystyle 0} -forms )
α , α = α , α {\displaystyle \langle \!\langle \alpha ,\alpha \rangle \!\rangle =\langle \!\langle {\star }\alpha ,{\star }\alpha \rangle \!\rangle } for α Ω 1 ( M ) {\displaystyle \alpha \in \Omega ^{1}(M)} ( Hodge star preserves 1 {\displaystyle 1} -form norm )
1 = d e t {\displaystyle {\star }\mathbf {1} =\mathbf {det} } ( Hodge dual of constant function 1 is the volume form )

Co-differential operator properties

δ δ = 0 {\displaystyle \delta \circ \delta =0} ( nilpotent )
δ = ( 1 ) k d {\displaystyle {\star }\delta =(-1)^{k}d{\star }} and d = ( 1 ) k + 1 δ {\displaystyle {\star }d=(-1)^{k+1}\delta {\star }} ( Hodge adjoint to d {\displaystyle d} )
d α , β = α , δ β {\displaystyle \langle \!\langle d\alpha ,\beta \rangle \!\rangle =\langle \!\langle \alpha ,\delta \beta \rangle \!\rangle } if M = 0 {\displaystyle \partial M=0} ( δ {\displaystyle \delta } adjoint to d {\displaystyle d} )
In general, M d α β = M α β + M α δ β {\displaystyle \int _{M}d\alpha \wedge \star \beta =\int _{\partial M}\alpha \wedge \star \beta +\int _{M}\alpha \wedge \star \delta \beta }
δ f = 0 {\displaystyle \delta f=0} for f Ω 0 ( M ) {\displaystyle f\in \Omega ^{0}(M)}

Lie derivative properties

d L X = L X d {\displaystyle d\circ {\mathcal {L}}_{X}={\mathcal {L}}_{X}\circ d} ( commutative with d {\displaystyle d} )
ι X L X = L X ι X {\displaystyle \iota _{X}\circ {\mathcal {L}}_{X}={\mathcal {L}}_{X}\circ \iota _{X}} ( commutative with ι X {\displaystyle \iota _{X}} )
L X ( ι Y α ) = ι [ X , Y ] α + ι Y L X α {\displaystyle {\mathcal {L}}_{X}(\iota _{Y}\alpha )=\iota _{[X,Y]}\alpha +\iota _{Y}{\mathcal {L}}_{X}\alpha }
L X ( α β ) = ( L X α ) β + α ( L X β ) {\displaystyle {\mathcal {L}}_{X}(\alpha \wedge \beta )=({\mathcal {L}}_{X}\alpha )\wedge \beta +\alpha \wedge ({\mathcal {L}}_{X}\beta )} ( Leibniz rule )

Exterior calculus identities

ι X ( 1 ) = X {\displaystyle \iota _{X}({\star }\mathbf {1} )={\star }X^{\flat }}
ι X ( α ) = ( 1 ) k ( X α ) {\displaystyle \iota _{X}({\star }\alpha )=(-1)^{k}{\star }(X^{\flat }\wedge \alpha )} if α Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k}(M)}
ι X ( ϕ α ) = ϕ ( ι d ϕ ( X ) α ) {\displaystyle \iota _{X}(\phi ^{*}\alpha )=\phi ^{*}(\iota _{d\phi (X)}\alpha )}
ν , μ Ω n ( M ) , μ  non-zero        f Ω 0 ( M ) :   ν = f μ {\displaystyle \nu ,\mu \in \Omega ^{n}(M),\mu {\text{ non-zero }}\ \Rightarrow \ \exists \ f\in \Omega ^{0}(M):\ \nu =f\mu }
X Y = g ( X , Y ) ( 1 ) {\displaystyle X^{\flat }\wedge {\star }Y^{\flat }=g(X,Y)({\star }\mathbf {1} )} ( bilinear form )
[ X , [ Y , Z ] ] + [ Y , [ Z , X ] ] + [ Z , [ X , Y ] ] = 0 {\displaystyle [X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0} ( Jacobi identity )

Dimensions

If n = dim M {\displaystyle n=\dim M}

dim Ω k ( M ) = ( n k ) {\displaystyle \dim \Omega ^{k}(M)={\binom {n}{k}}} for 0 k n {\displaystyle 0\leq k\leq n}
dim Ω k ( M ) = 0 {\displaystyle \dim \Omega ^{k}(M)=0} for k < 0 ,   k > n {\displaystyle k<0,\ k>n}

If X 1 , , X n Γ ( T M ) {\displaystyle X_{1},\ldots ,X_{n}\in \Gamma (TM)} is a basis, then a basis of Ω k ( M ) {\displaystyle \Omega ^{k}(M)} is

{ X σ ( 1 ) X σ ( k )   :   σ S ( k , n ) } {\displaystyle \{X_{\sigma (1)}^{\flat }\wedge \ldots \wedge X_{\sigma (k)}^{\flat }\ :\ \sigma \in S(k,n)\}}

Exterior products

Let α , β , γ , α i Ω 1 ( M ) {\displaystyle \alpha ,\beta ,\gamma ,\alpha _{i}\in \Omega ^{1}(M)} and X , Y , Z , X i {\displaystyle X,Y,Z,X_{i}} be vector fields.

α ( X ) = det [ α ( X ) ] {\displaystyle \alpha (X)=\det {\begin{bmatrix}\alpha (X)\\\end{bmatrix}}}
( α β ) ( X , Y ) = det [ α ( X ) α ( Y ) β ( X ) β ( Y ) ] {\displaystyle (\alpha \wedge \beta )(X,Y)=\det {\begin{bmatrix}\alpha (X)&\alpha (Y)\\\beta (X)&\beta (Y)\\\end{bmatrix}}}
( α β γ ) ( X , Y , Z ) = det [ α ( X ) α ( Y ) α ( Z ) β ( X ) β ( Y ) β ( Z ) γ ( X ) γ ( Y ) γ ( Z ) ] {\displaystyle (\alpha \wedge \beta \wedge \gamma )(X,Y,Z)=\det {\begin{bmatrix}\alpha (X)&\alpha (Y)&\alpha (Z)\\\beta (X)&\beta (Y)&\beta (Z)\\\gamma (X)&\gamma (Y)&\gamma (Z)\end{bmatrix}}}
( α 1 α l ) ( X 1 , , X l ) = det [ α 1 ( X 1 ) α 1 ( X 2 ) α 1 ( X l ) α 2 ( X 1 ) α 2 ( X 2 ) α 2 ( X l ) α l ( X 1 ) α l ( X 2 ) α l ( X l ) ] {\displaystyle (\alpha _{1}\wedge \ldots \wedge \alpha _{l})(X_{1},\ldots ,X_{l})=\det {\begin{bmatrix}\alpha _{1}(X_{1})&\alpha _{1}(X_{2})&\dots &\alpha _{1}(X_{l})\\\alpha _{2}(X_{1})&\alpha _{2}(X_{2})&\dots &\alpha _{2}(X_{l})\\\vdots &\vdots &\ddots &\vdots \\\alpha _{l}(X_{1})&\alpha _{l}(X_{2})&\dots &\alpha _{l}(X_{l})\end{bmatrix}}}

Projection and rejection

( 1 ) k ι X α = ( X α ) {\displaystyle (-1)^{k}\iota _{X}{\star }\alpha ={\star }(X^{\flat }\wedge \alpha )} ( interior product ι X {\displaystyle \iota _{X}{\star }} dual to wedge X {\displaystyle X^{\flat }\wedge } )
( ι X α ) β = α ( X β ) {\displaystyle (\iota _{X}\alpha )\wedge {\star }\beta =\alpha \wedge {\star }(X^{\flat }\wedge \beta )} for α Ω k + 1 ( M ) , β Ω k ( M ) {\displaystyle \alpha \in \Omega ^{k+1}(M),\beta \in \Omega ^{k}(M)}

If | X | = 1 ,   α Ω k ( M ) {\displaystyle |X|=1,\ \alpha \in \Omega ^{k}(M)} , then

  • ι X ( X ) : Ω k ( M ) Ω k ( M ) {\displaystyle \iota _{X}\circ (X^{\flat }\wedge ):\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)} is the projection of α {\displaystyle \alpha } onto the orthogonal complement of X {\displaystyle X} .
  • ( X ) ι X : Ω k ( M ) Ω k ( M ) {\displaystyle (X^{\flat }\wedge )\circ \iota _{X}:\Omega ^{k}(M)\rightarrow \Omega ^{k}(M)} is the rejection of α {\displaystyle \alpha } , the remainder of the projection.
  • thus ι X ( X ) + ( X ) ι X = id {\displaystyle \iota _{X}\circ (X^{\flat }\wedge )+(X^{\flat }\wedge )\circ \iota _{X}={\text{id}}} ( projection–rejection decomposition )

Given the boundary M {\displaystyle \partial M} with unit normal vector N {\displaystyle N}

  • t := ι N ( N ) {\displaystyle \mathbf {t} :=\iota _{N}\circ (N^{\flat }\wedge )} extracts the tangential component of the boundary.
  • n := ( id t ) {\displaystyle \mathbf {n} :=({\text{id}}-\mathbf {t} )} extracts the normal component of the boundary.

Sum expressions

( d α ) ( X 0 , , X k ) = 0 j k ( 1 ) j d ( α ( X 0 , , X ^ j , , X k ) ) ( X j ) + 0 i < j k ( 1 ) i + j α ( [ X i , X j ] , X 0 , , X ^ i , , X ^ j , , X k ) {\displaystyle (d\alpha )(X_{0},\ldots ,X_{k})=\sum _{0\leq j\leq k}(-1)^{j}d(\alpha (X_{0},\ldots ,{\hat {X}}_{j},\ldots ,X_{k}))(X_{j})+\sum _{0\leq i<j\leq k}(-1)^{i+j}\alpha ([X_{i},X_{j}],X_{0},\ldots ,{\hat {X}}_{i},\ldots ,{\hat {X}}_{j},\ldots ,X_{k})}
( d α ) ( X 1 , , X k ) = i = 1 k ( 1 ) i + 1 ( X i α ) ( X 1 , , X ^ i , , X k ) {\displaystyle (d\alpha )(X_{1},\ldots ,X_{k})=\sum _{i=1}^{k}(-1)^{i+1}(\nabla _{X_{i}}\alpha )(X_{1},\ldots ,{\hat {X}}_{i},\ldots ,X_{k})}
( δ α ) ( X 1 , , X k 1 ) = i = 1 n ( ι E i ( E i α ) ) ( X 1 , , X ^ i , , X k ) {\displaystyle (\delta \alpha )(X_{1},\ldots ,X_{k-1})=-\sum _{i=1}^{n}(\iota _{E_{i}}(\nabla _{E_{i}}\alpha ))(X_{1},\ldots ,{\hat {X}}_{i},\ldots ,X_{k})} given a positively oriented orthonormal frame E 1 , , E n {\displaystyle E_{1},\ldots ,E_{n}} .
( L Y α ) ( X 1 , , X k ) = ( Y α ) ( X 1 , , X k ) i = 1 k α ( X 1 , , X i Y , , X k ) {\displaystyle ({\mathcal {L}}_{Y}\alpha )(X_{1},\ldots ,X_{k})=(\nabla _{Y}\alpha )(X_{1},\ldots ,X_{k})-\sum _{i=1}^{k}\alpha (X_{1},\ldots ,\nabla _{X_{i}}Y,\ldots ,X_{k})}

Hodge decomposition

If M = {\displaystyle \partial M=\emptyset } , ω Ω k ( M ) α Ω k 1 ,   β Ω k + 1 ,   γ Ω k ( M ) ,   d γ = 0 ,   δ γ = 0 {\displaystyle \omega \in \Omega ^{k}(M)\Rightarrow \exists \alpha \in \Omega ^{k-1},\ \beta \in \Omega ^{k+1},\ \gamma \in \Omega ^{k}(M),\ d\gamma =0,\ \delta \gamma =0} such that[citation needed]

ω = d α + δ β + γ {\displaystyle \omega =d\alpha +\delta \beta +\gamma }

Poincaré lemma

If a boundaryless manifold M {\displaystyle M} has trivial cohomology H k ( M ) = { 0 } {\displaystyle H^{k}(M)=\{0\}} , then any closed ω Ω k ( M ) {\displaystyle \omega \in \Omega ^{k}(M)} is exact. This is the case if M is contractible.

Relations to vector calculus

Identities in Euclidean 3-space

Let Euclidean metric g ( X , Y ) := X , Y = X Y {\displaystyle g(X,Y):=\langle X,Y\rangle =X\cdot Y} .

We use = ( x , y , z ) {\displaystyle \nabla =\left({\partial \over \partial x},{\partial \over \partial y},{\partial \over \partial z}\right)} differential operator R 3 {\displaystyle \mathbb {R} ^{3}}

ι X α = g ( X , α ) = X α {\displaystyle \iota _{X}\alpha =g(X,\alpha ^{\sharp })=X\cdot \alpha ^{\sharp }} for α Ω 1 ( M ) {\displaystyle \alpha \in \Omega ^{1}(M)} .
d e t ( X , Y , Z ) = X , Y × Z = X × Y , Z {\displaystyle \mathbf {det} (X,Y,Z)=\langle X,Y\times Z\rangle =\langle X\times Y,Z\rangle } ( scalar triple product )
X × Y = ( ( X Y ) ) {\displaystyle X\times Y=({\star }(X^{\flat }\wedge Y^{\flat }))^{\sharp }} ( cross product )
ι X α = ( X × A ) {\displaystyle \iota _{X}\alpha =-(X\times A)^{\flat }} if α Ω 2 ( M ) ,   A = ( α ) {\displaystyle \alpha \in \Omega ^{2}(M),\ A=({\star }\alpha )^{\sharp }}
X Y = ( X Y ) {\displaystyle X\cdot Y={\star }(X^{\flat }\wedge {\star }Y^{\flat })} ( scalar product )
f = ( d f ) {\displaystyle \nabla f=(df)^{\sharp }} ( gradient )
X f = d f ( X ) {\displaystyle X\cdot \nabla f=df(X)} ( directional derivative )
X = d X = δ X {\displaystyle \nabla \cdot X={\star }d{\star }X^{\flat }=-\delta X^{\flat }} ( divergence )
× X = ( d X ) {\displaystyle \nabla \times X=({\star }dX^{\flat })^{\sharp }} ( curl )
X , N σ = X {\displaystyle \langle X,N\rangle \sigma ={\star }X^{\flat }} where N {\displaystyle N} is the unit normal vector of M {\displaystyle \partial M} and σ = ι N d e t {\displaystyle \sigma =\iota _{N}\mathbf {det} } is the area form on M {\displaystyle \partial M} .
Σ d X = Σ X = Σ X , N σ {\displaystyle \int _{\Sigma }d{\star }X^{\flat }=\int _{\partial \Sigma }{\star }X^{\flat }=\int _{\partial \Sigma }\langle X,N\rangle \sigma } ( divergence theorem )

Lie derivatives

L X f = X f {\displaystyle {\mathcal {L}}_{X}f=X\cdot \nabla f} ( 0 {\displaystyle 0} -forms )
L X α = ( X α ) + g ( α , X ) {\displaystyle {\mathcal {L}}_{X}\alpha =(\nabla _{X}\alpha ^{\sharp })^{\flat }+g(\alpha ^{\sharp },\nabla X)} ( 1 {\displaystyle 1} -forms )
L X β = ( X B B X + ( div X ) B ) {\displaystyle {\star }{\mathcal {L}}_{X}\beta =\left(\nabla _{X}B-\nabla _{B}X+({\text{div}}X)B\right)^{\flat }} if B = ( β ) {\displaystyle B=({\star }\beta )^{\sharp }} ( 2 {\displaystyle 2} -forms on 3 {\displaystyle 3} -manifolds )
L X ρ = d q ( X ) + ( div X ) q {\displaystyle {\star }{\mathcal {L}}_{X}\rho =dq(X)+({\text{div}}X)q} if ρ = q Ω 0 ( M ) {\displaystyle \rho ={\star }q\in \Omega ^{0}(M)} ( n {\displaystyle n} -forms )
L X ( d e t ) = ( div ( X ) ) d e t {\displaystyle {\mathcal {L}}_{X}(\mathbf {det} )=({\text{div}}(X))\mathbf {det} }

References

  1. ^ Crane, Keenan; de Goes, Fernando; Desbrun, Mathieu; Schröder, Peter (21 July 2013). "Digital geometry processing with discrete exterior calculus". ACM SIGGRAPH 2013 Courses. pp. 1–126. doi:10.1145/2504435.2504442. ISBN 9781450323390. S2CID 168676.
  2. ^ Schwarz, Günter (1995). Hodge Decomposition – A Method for Solving Boundary Value Problems. Springer. ISBN 978-3-540-49403-4.
  3. ^ Cartan, Henri (26 May 2006). Differential forms (Dover ed.). Dover Publications. ISBN 978-0486450100.
  4. ^ Bott, Raoul; Tu, Loring W. (16 May 1995). Differential forms in algebraic topology. Springer. ISBN 978-0387906133.
  5. ^ Abraham, Ralph; J.E., Marsden; Ratiu, Tudor (6 December 2012). Manifolds, tensor analysis, and applications (2nd ed.). Springer-Verlag. ISBN 978-1-4612-1029-0.
  6. ^ a b Tu, Loring W. (2011). An introduction to manifolds (2nd ed.). New York: Springer. pp. 34, 233. ISBN 9781441974006. OCLC 682907530.